rt_cinertia - compute the Cartesian (operational space) manipulator inertia matrix[view code]
This function computes the Cartesian, or operational space, inertia matrix. robot is a robot object that describes the manipulator dynamics and kinematics, and q is an n-element vector of joint coordinates.
The Cartesian inertia matrix is calculated from the joint-space inertia matrix and relates Cartesian force/torque to Cartesian acceleration.
// Joint-space inertia matrix of a Puma 560 manipulator, at the given // pose exec <PATH>/models/rt_puma560.sce; // load Puma 560 parameters q = 2*%pi*rand(1,6) - %pi, // the given pose M = rt_inertia(p560, q), // joint-space inertia matr. // compute the corresponding operational-space inertia matrix: // by compounded transforms J = rt_jacob0(p560, q); Ji = inv(J); Ji.' * M * Ji, // by using rt_cinertia() (direct approach) rt_cinertia(p560, q),
rt_frne, rt_inertia, rt_robot,
Corke, P.I. "A Robotics Toolbox for MATLAB", IEEE Robotics and Automation Magazine, Volume 3(1), March 1996, pp. 24-32
O. Khatib, "A unified approach for motion and force control of robot manipulators: the operational space formulation", IEEE Trans. Robot. Autom., vol. 3, pp. 43-53, Feb. 1987.