rt_trnorm - normalize a homogeneous transform[view code]
Return a normalized copy of the homogeneous transform T. Finite word length arithmetic can lead to homogeneous transformations in which the rotational submatrix is not orthogonal, that is, det(R) ~= 1.
// The following example shows how rt_trnorm() can be used to normalize // a given homogeneous transform. // generate a homogeneous transform T = rt_roty(%pi/3), // perturb T T = [rt_tr2rot(T) + 1e-7*ones(3, 3), [0; 0; 0]; 0, 0, 0, 1], // compute determinant of its rotational submatrix det(rt_tr2rot(T)), // generate a normalized copy of T T2 = rt_trnorm(T), // compute determinant of its rotational submatrix det(rt_tr2rot(T2)),
Corke, P.I. "A Robotics Toolbox for MATLAB", IEEE Robotics and Automation Magazine, Volume 3(1), March 1996, pp. 24-32
Funda, J. "Quaternions and homogeneous transform in robotics." Master's thesis, University of Pennsylvania, Apr. 1988.