Scilab Function
Last update : October 2007

rt_coriolis - compute the manipulator Coriolis/centripetal torque components[view code]

Calling Sequence

tau_c = rt_coriolis(robot, q, qd)



Return the joint torques due to rigid-body Coriolis and centripetal effects for the specified joint state q and velocity qd. Coriolis/centripetal torque components are evaluated from the equations of motion using recursive Newton-Euler formulation, with joint acceleration and gravitational acceleration set to zero. Joints frictions are ignored in this calculation.


   // The following code can be used to simulate the motion of the Puma 560
   // from rest in the zero angle pose with zero applied joint torques
   exec <PATH>/models/rt_puma560.sce;           // load Puma 560 parameters
   p560nf = rt_nofriction(p560);                // remove friction
   t = [0:0.05:10];
   tic(); [q, qd] = rt_fdyn(p560nf, 0, t); toc(),

   // In this condition the robot is collapsing under gravity. An
   // animation using rt_plot() clearly depicts this
   cfh = scf(); a0 = cfh.children; a0.tight_limits = "on";
   a0.rotation_angles = [74, -30];              // set point of view
   rt_plot(p560nf, q.');

   // It is interesting to note that rotational velocity of the upper and
   // lower arm are exerting centripetal and Coriolis torques on the waist
   // joint, causing it to rotate
   tic(); tauc = rt_coriolis(p560nf, q.', qd.'); toc(),
   cfh = scf();
   subplot(2,1,1); plot(t, tauc(:,1));          // Coriolis/centripetal (J1)
   xgrid(); xtitle("", "Time (s)", "Coriolis/centripetal 1 (Nm)");
   subplot(2,1,2); plot(t, q(1,:));
   xgrid(); xtitle("", "Time (s)", "Joint 1 (rad)");

See Also

rt_frne,  rt_rne,  rt_itorque,  rt_gravload,  rt_link,  


original Matlab version by

Peter I. Corke CSIRO Manufacturing Science and Technology

Scilab implementation by

Matteo Morelli Interdepartmental Research Center "E. Piaggio", University of Pisa


Corke, P.I. "A Robotics Toolbox for MATLAB", IEEE Robotics and Automation Magazine, Volume 3(1), March 1996, pp. 24-32

M.W. Walker and D.E. Orin. Efficient dynamic computer simulation of robotic mechanisms. ASME Journal of Dynamic Systems, Measurement and Control, 104:205-211, 1982

Get the Robotics Toolbox for Scilab/Scicos at Fast, secure and Free Open Source software downloads