
Using RTSS with the Scicos package

Matteo Morelli∗

October, 2007

1 Introduction

RTSS comes with several demonstration scripts
which show how the toolbox can be productively used
in studying robotics. Demos on subjects like

• Homogeneous Transformations

• Cartesian and joint-space Trajectories

• Forward and Inverse Kinematics

• Differential Motions and Manipulator Jacobians

• Forward and Inverse Dynamics

• Graphical Animations of Robot Motions

can be run individually by choosing “Robotics” in the
Scilab demo menu.

Other demos are also provided with RTSS. They
illustrate common topics in robot control and give the
user an insight into the use of RTSS for constructing
robot kinematic and dynamic models with Scicos.

Users with no previous Scicos experience are ad-
vised to read the relevant manuals [1, 2, 3, 4] and
experiment with the examples supplied. Experienced
Scicos users should find the use of the Robotics blocks
quite straightforward.

In the following sections, a short description of all
the examples of Scicos diagrams provided with RTSS
will be given. Each of these demos can be run by
executing the corresponding Scilab simulation script
that is located in the <PATH>/demos/ directory, where
<PATH> is the installation path of RTSS.

∗Interdepartmental Research Center “E. Piaggio”, Univer-
sity of Pisa, Italy

Figure 1: RTSS example diag1.cos

2 Dynamic simulation of Puma
560 robot collapsing under
gravity

The Scicos model diag1.cos, shown in figure 1, is the
Scilab counterpart of the Simulink model demo1.mdl
provided with the Robotics Toolbox for Matlab–
from which RTSS draws inspiration –written by Pro-
fessor Peter Corke [5].

The rt_robot block in this diagram would be fa-
miliar to RTSS users. It is similar to the rt_fdyn()
function and represents the forward dynamics of the
robot (in this case, a Puma 560 robot). The param-
eters of the rt_robot block contain the robot object
to be simulated and the initial joint angles.

This demo can be run by executing the correspond-
ing Scilab simulation script rt_demo1.sce. To do
this, just type the following command at the Scilab
prompt (please, replace <PATH> with the RTSS in-
stallation path):�
exec <PATH>/demos/rt_demo1.sce;� �

1



Figure 2: RTSS example diag3.cos

Alternatively, to run this example, first create a
Puma 560 robot object in the workspace, then start
the simulation using Simulate/Run option from the
diagram toolbar:�
exec <PATH>/models/rt_puma560.sce;

scicos("<PATH>/demos/scs/diag1.cos");� �
Please note that following this procedure, the simu-

lation results will have to be processed manually (see
the file <PATH>/demos/rt_demo1.sce for further de-
tails).

Finally, it is important to note that the presence of
friction in the dynamic model can prevent the inte-
gration from converging. For this reason, the function
rt_nofriction has been used in the context of the
Scicos diagram to return a friction-free robot object.

3 Computed torque control of
a Puma 560 robot

The Scicos model diag3.cos, shown in figure 2, is the
Scilab counterpart of the Simulink model demo3.mdl
provided with the Robotics Toolbox for Matlab by
Peter Corke. It represents a Puma 560 robot with a
computed torque control structure [6].

This diagram introduces the rt_rne block which
computes the inverse dynamics using the fast re-
cursive Newton-Euler algorithm (see help on rt_-
frne()), and the rt_jtraj block which computes a

vector quintic polynomial. rt_jtraj has parameters
which include the initial and final values of the each
output element as well as the overall motion time.
Initial and final velocity are assumed to be zero.

Note that, in practice the dynamic model of the
robot is not exactly known and we can only invert
our best estimate of the rigid-body dynamics. In the
simulation, this has been modeled by using the rt_-
perturb() function in the context of the Scicos dia-
gram to alter the parameters of the dynamic model
used in the rt_rne block.

This demo can be run by executing the correspond-
ing Scilab simulation script rt_demo3.sce:�
exec <PATH>/demos/rt_demo3.sce;� �

Alternatively, to run this example, first create a
Puma 560 robot object in the workspace, then start
the simulation using Simulate/Run option from the
diagram toolbar:�
exec <PATH>/models/rt_puma560.sce;

scicos("<PATH>/demos/scs/diag3.cos");� �
See the file <PATH>/demos/rt_demo3.sce for de-

tails on how to process the simulation results.

4 A comparison between some
inverse kinematics algo-
rithms

The examples that follow allow for a comparison of
performance between some inverse kinematics algo-
rithms presented in [7]. Simulation results obtained
by using RTSS are validated by those discussed in
the book.

Consider a three-link (RRR) planar arm whose link
lenghts are a1 = a2 = a3 = 0.5m. Let the arm
be at the initial posture q =

[
π π/2 π/2

]T rad,
corresponding to the end-effector location: p =[

0 0.5
]T m, φ = 0 rad. A circular path of radius

0.25 m and center at (0.25, 0.5) m is assigned to the
end-effector. Let the motion trajectory be

pd(t) =
[

0.25 (1− cos(πt))
0.25 (2 + sin(πt))

]
0 ≤ t ≤ 4

2



Figure 3: RTSS example diag10.cos

As regards end-effector orientation, initially it is
required to follow the trajectory

φd(t) = sin
(

π
24 t

)
0 ≤ t ≤ 4

The forward kinematics for this arm is computed
by the rt_fkine block, while its Jacobian is returned
from the rt_jacob0 block by extracting the three
nonnull rows of interest for the operational space.
Note that, the rt_jacob0 block returns the geometric
Jacobian of the manipulator, whereas the algorithms
that will be described in the following subsections
utilize the analytical Jacobian since they operate on
error variables (position and orientation) that are de-
fined in the operational space. In general, these two
Jacobians are different, but they coincide in this sim-
ple case of study and therefore the use of the rt_-
jacob0 block is correct.

The inverse kinematics algorithms were imple-
mented by adopting the Forward Euler numerical in-
tegration scheme provided by the rt_fe block, with
an integration time ∆t = 1ms.

4.1 Open-loop inverse Jacobian algo-
rithm

At first, the inverse kinematics along the given tra-
jectory has been performed with the Scicos model
diag10.cos shown in figure 3. It integrates the joint
velocity vector

q̇ = J−1
A (q)ẋd (1)

Figure 4: RTSS example diag11.cos

where ẋd =
[

ṗT
d φ̇d

]T

is the time derivative vec-
tor of the assigned end-effector posture xd. The ob-
tained results show that the norm of the position er-
ror along the whole trajectory is bounded; at steady
state, after t = 4 sec, the error sets to a constant value
in view of the typical drift of open-loop schemes. A
similar drift can be observed for the orientation error.

This demo can be run by executing the correspond-
ing Scilab simulation script rt_demo10.sce. To do
this, just type the following command at the Scilab
prompt:�
exec <PATH>/demos/rt_demo10.sce;� �
4.2 Closed-loop inverse Jacobian algo-

rithm

Next, the Scicos block scheme illustrated in figure 4
corresponding to the Jacobian inverse algorithm, that
integrates the joint velocity vector

q̇ = J−1
A (q) (ẋd + Ke) (2)

has been used, with the matrix gain K =
diag{500, 500, 100}. Thanks to the closed-loop fea-
ture of the scheme, as shown by the simulation re-
sults, the norm of the position error is radically de-
creased and converges to zero at steady state; the
orientation error, too, is decreased and tends to zero
at steady state.

3



Figure 5: RTSS example diag12.cos

This demo can be run by executing the correspond-
ing Scilab simulation script rt_demo11.sce:�
exec <PATH>/demos/rt_demo11.sce;� �
4.3 Jacobian pseudo-inverse algo-

rithm

If the end-effector orientation is not constrained, the
operational space becomes two-dimensional and a re-
dundant degree of mobility is then available. In the
case of a redundant manipulator, equation (2) can be
generalized into

q̇ = J†A (ẋd + Ke) +
(
I− J†AJA

)
q̇0 (3)

4.3.1 Unconstrained solution

The Scicos diagram in figure 5 implements (3), where
the redundancy is not exploited (q̇0 = 0) and K =
diag{500, 500}. The simulation results reveal that
position tracking remains satisfactory and, of course,
the end-effector orientation freely varies along the
given trajectory.

This demo can be run by executing the correspond-
ing Scilab simulation script rt_demo12.sce:�
exec <PATH>/demos/rt_demo12.sce;� �

Figure 6: RTSS example diag13.cos

4.3.2 Solution with mechanical joint limit
constraints

In order to show the capability of handling the degree
of redundancy, a Scicos model based on (3) with

q̇0 = k0

(
∂w(q)

∂q

)T

(4)

has been used; only one type of constraint has been
considered concerning an objective function (w(q) in
(4)) to locally maximize. The objective function con-
sidered is the distance from mechanical joint limits,
defined as

w(q1, q2, q3) = −1
6

3∑
i=1

(
qi − q̄i

qiM − qim

)2

(5)

where qiM (qim) represents the maximum (minimum)
joint range and q̄i is the middle value of the joint
range. Specifically, it is assumed what follows: the
first joint does not have limits (q1m = −2π, q1M =
2π), the second joint has limit q2m = −π/2, q2M =
π/2, and the third joint has limit q3m = −3π/2,
q3M = −π/2. It is not difficult to verify that, in
the unconstrained case, the trajectories of joints 2
and 3 violate the respective limits. The gain in (4)
has been set to k0 = 250. Simulation results show
the effectiveness of the technique with utilization of
redundancy, since both joints 2 and 3 tend to invert

4



their motion– with respect to the unconstrained tra-
jectories obtained as in subsection 4.3.1 –and keep
far from the minimum limit for joint 2 and the max-
imum limit for joint 3, respectively. Such an effort
does not appreciably influences the position tracking
error, whose norm is bounded anyhow within accept-
able values.

This demo can be run by executing the correspond-
ing Scilab simulation script rt_demo13.sce:�
exec <PATH>/demos/rt_demo13.sce;� �
References

[1] S. Campbell, J.-P. Chancelier, and R. Nikoukhah,
Modeling and Simulation in Scilab/Scicos. New
York, NY: Springer-Verlag, 2005.

[2] R. Bucher, S. Mannori, and T. Netter, RTAI-Lab
tutorial: Scilab, Comedi, and real-time control,
2006.

[3] R. Nikoukhah and S. Steer, SCICOS A Dynamic
System Builder and Simulator User’s Guide,
2005.

[4] Scilab Group, “Introduction to Scilab–User’s
Guide,” tech. rep., INRIA Metalau Projec-
t/ENPC Cermics, 2000.

[5] P. I. Corke, “A robotics toolbox for MATLAB,”
IEEE Robotics and Automation Magazine, vol. 3,
pp. 24–32, Mar. 1996.

[6] P. I. Corke, Robotics TOOLBOX for MATLAB
(Release 7.1), Apr. 2002. robot7.1/robot.pdf.

[7] L. Sciavicco and B. Siciliano, Modelling and Con-
trol of Robot Manipulators. Advanced Textbooks
in Control and Signal Processing, London, UK:
Springer-Verlag, 2nd ed., 2000.

5


	Introduction
	Dynamic simulation of Puma 560 robot collapsing under gravity
	Computed torque control of a Puma 560 robot
	A comparison between some inverse kinematics algorithms
	Open-loop inverse Jacobian algorithm
	Closed-loop inverse Jacobian algorithm
	Jacobian pseudo-inverse algorithm
	Unconstrained solution
	Solution with mechanical joint limit constraints



